Flow nozzle Model : F600

Description

The flow nozzles, more costly than other orifice due to their structure, are suited for determining the flow rates of fluids flowing at high temperature and high pressure. Under the same measuring conditions, a flow nozzle has a higher mechanical strength, can permit the flow of more than 60 percent great volume of a fluid, and can measure the flow rates of fluids containing solid particles less disturbed than an orifice having the same bore. Thus, they are suited, in addition, for high speed flowing fluids. We can supply not only single flow nozzles, but also flow nozzles having welded short pipes on both their upstream and downstream sides.

Specification

Nozzle mounting types

Flange type Weld-in type Holding ring type

Flow calculation standards

- Long-radius flow nozzle
- JIS Z 8762, IS0 5167-3, ASME MFC-3M ISA 1932, flow nozzle ISO 5167-3 JIS Z 8762

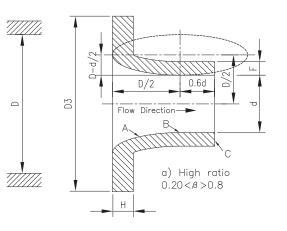
Pressure taps

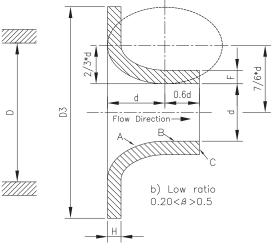
1D and 1/2D tap, throat tap

Nominal pipe sizes available

50 ~ 630 mm 2" ~ 25"

β Limit


0.2 < β < 0.8 (Low - beta) long - Radius nozzle 0.2 ≤ β ≤ 0.5 (High - beta) long - Radius nozzle 0.2 ≤ β ≤ 0.8 β : Ratio of throat to pipe diameter = d/D0 (d: Throat diameter)


Nozzle thicknesses

Maker standards

Material

A182-F11, F22, F91 A182-F304 A182-F316 / F316L

Main	order							Ordering information			
1. Base	e model					7. Pipe material					
F600	Flow no	zzle				C1	A106 Gr.B				
						C2	A106 Gr.C				
2. Type	•					A1	A335 P11				
W	Weld in					A2	A335 P22				
н	Holding					A3	A335 P91				
F	Flanged					XX	Other				
•	. iaiiget										
3. Line	size					8. Holding ring material					
JIS	mm	ANSI	inch	DIN	mm	A1	A182 F11				
J015	15A	A001	½B	D015	15A	A2	A182 F22				
J020	20A	A002	3∕4B	D020	20A	A3	A182 F91				
J025	25A	A003	1B	D025	25A	C1	A105				
J040	40A	A004	1½B	D040	40A	H4	A182 F304				
J050	50A	A005	2B	D050	50A	H5	A182 F316				
J065	65A	A006	2½B	D065	65A	ZZ	Other				
J080	80A	A007	3B	D080	80A	NO	None				
J100	100A	A008	4B	D100	100A						
J125	125A	A009	5B	D125	125A	9. Boss	s size				
J150	150A	A010	6B	D150	150A	2S	½" S.W				
J200	200A	A011	8B	D200	200A	3S	¾" S.W				
J250	250A	A012	10B	D250	250A	4S	1" S.W				
J300	300A	A013	12B	D300	300A	ОН	Other				
J350	350A	A014	14B	D350	350A						
J400	400A	A015	16B	D400	400A	10. Opt	ion				
J450	450A	A016	18B	D450	450A		Inspection p	pot			
J500	500A	A017	20B	D500	500A	N	None				
J600	600A	A018	24B	D600	600A	0	Other				
J700	700A	A019	28B	D700	700A	v	00101				

4. Tap type

J800

J000

XXXX

R Radius tap

800A

1,000A

Other

A020

A021

32B

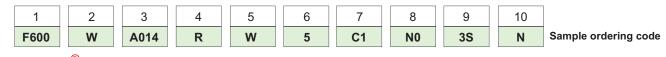
40B

D800

D000

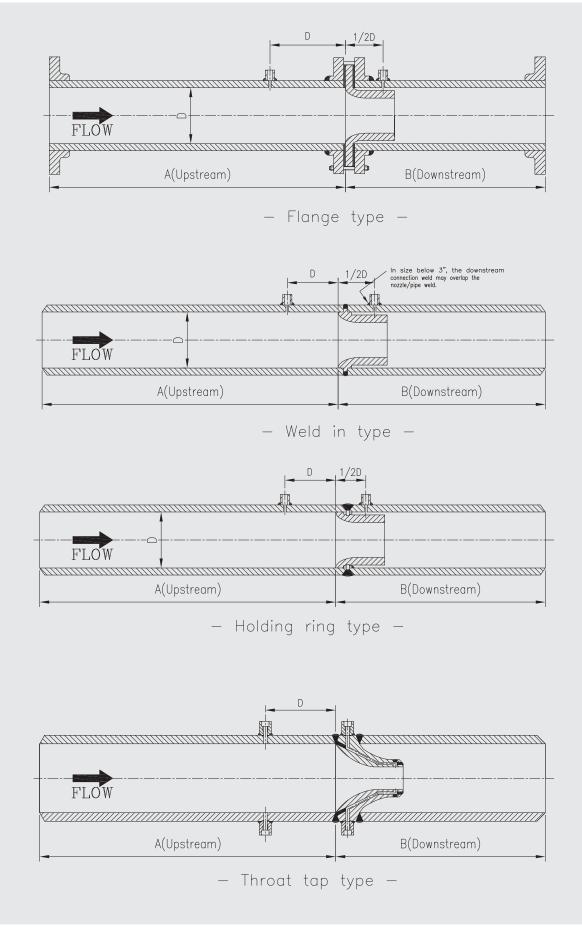
800A

1,000A


T Throat tap

5. End connection

- F Flanged
- W Welded on


6. Nozzle material

- 4 A182 F304
- 5 A182 F316
- 6 A182 F316L
- 7 A182 F91
- Z Other

Dimension

Differential pressure and pressure loss

When a throttle element is interposed in a closed passage of fluid in piping, a difference is produced between the pressures upstream and downstream the throttle element as illustrated in Fig.1. This difference ($\Delta P=p1-p2$) is called differential pressure. The fluid passing through the section 2 gradually regains its pressure as it flows downstream, but the downstream pressure cannot be recovered up to the upstream pressure, part of the pressure being lost. This loss is called a pressure loss (permanent pressure loss = p3). The extent of this pressure loss depends on the type of throttle elements and their open area ratio, as shown in Fig.2 The relation between the flow rate and the differential pressure is given by:

$$\mathbf{Q} = \mathbf{C} \sqrt{\Delta \mathbf{P} / \rho}$$

$$\mathbf{W} = \mathbf{C}\sqrt{2P} * \rho/\rho_1$$
$$\mathbf{W} = \mathbf{C}\sqrt{2P} * \rho$$

Q (m³/h) : Volume rate of flow at density operating conditions Qn (Nm³/h) : Volume rate of flow at density bass conditions

W (kg/h) : Weight rate of flow

- $\rho~~(kg/m^{3})$: Density in operating conditions
- ρn (kg/Nm³) : Density in base conditions

C : Constant coefficient

From the above, the relation between the flow rate and the differential pressure where the density is constant but the flow rate is variable is as listed in table 1. In other words, the flow rate is obtainable by measuring the differential pressure. When the density is variable (When the pressure and temperature are variable), the true flow rate can be given by compensating the variate of the density by the above equation (This however, is not applicable when the density varies to a great extent.) Throttle Element

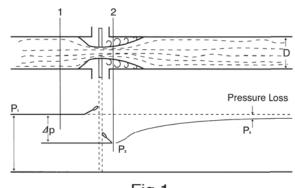
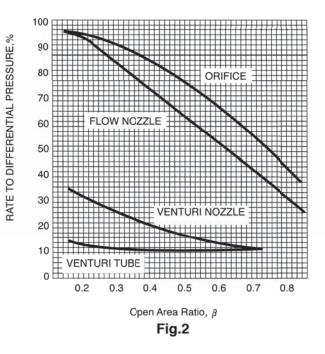



Fig.1

Table 1 : Relation between Flow Rate and Differential Pressure

Flow rate (%)	100	90	80	70	60	50	40	30	20	10	0
Differential pressure	100	81	64	49	36	25	16	9	4	1	0

